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FLIGHT TEST OF CARBON-PHENOLIC ON A SPACECRAFT LAUNCHED
BY THE PACEMAKER VEHICLE SYSTEM

By Thomas E. Walton, Jr., and William G. Witte
Langley Research Center

SUMMARY

Carbon-phenolic material consisting of 50 percent carbon fibers and 50 percent
phenolic resin was flight tested on a recoverable spacecraft launched by the Pacemaker
vehicle system. The heat shield of the spacecraft was fabricated so that the carbon fibers
in the ablator material had different orientations over several areas of the spacecraft.
The environment in which the spacecraft was tested produced heating rates on the hemi-
spherical nose up to 13.6 MW/m2 (1200 Btu/ft2-sec) and stagnation-point pressures up
to 1.27 MN/m?2 (12.5 atm). The experimental results are presented. Due to high heat-
ing rates and possible spallation and mechanical char removal the greatest mass loss
occurred in the nose region. Essentially uniform surface recession and char thickness
were observed on the conical section of the spacecraft.

A comparison of measured heating rates with computed turbulent and laminar heat-
ing rates, as well as measurements of sound-pressure fluctuations in the boundary layer
obtained with acoustic sensors, indicated that the boundary layer underwent transition,
The acoustic sensor provides an interesting new data form for the general study of
boundary-layer transition for free-flight investigations.

INTRODUCTION

At present, there is a great interest in developing heat-shield materials which are
capable of withstanding the environment produced by velocities which would be encoun-
tered on return from an interplanetary mission. Carbon-phenolic appears to be one of
the more promising ablative materials for this application since it is capable of forming
and retaining a high-strength, high-temperature char layer. Retaining a high-temperature
char layer contributes to the efficiency of a heat shield by: (1) reradiating large quanti-
ties of heat, (2) reducing the convective heat transfer by lowering the temperature differ-
ence across the boundary layer, (3) maintaining a nearly constant geometry, and (4) in
very high heating environments, subliming and thereby absorbing additional heat. These
characteristics suggest that carbon-phenolic is an attractive ablative material for mis-
sions of high heating and high aerodynamic shear flow.



Carbon-phenolic has been the subject of several studies conducted in ground test
facilities (e.g., refs. 1 and 2). As a result of considerable interest in obtaining flight
data on this material, the present flight test (one in a series of materials technology
experiments) was conducted. The spacecraft containing the experiment was launched by
a Pacemaker vehicle from NASA Wallops Station. At the end of the flight the spacecraft
was recovered from the ocean.

The primary purpose of the test was to obtain ablation performance data on the
carbon-phenolic material. The heat shield was fabricated with carbon-phenolic material
having different fiber-plane orientations over several areas of the spacecraft in order to
detect a preferred fiber-plane orientation, if such exists for these test conditions. Reces-
sion and temperature measurements obtained from the experiment are presented herein,
The recession measurements were obtained with radioactive ablation sensors and by post-
flight profile-change measurements.

In addition to these ablation measurements, the spacecraft was instrumented to
measure boundary-layer transition. This was accomplished with acoustic sensors and
thin-foil calorimeters. The measurements obtained from these instruments are pre-
sented. Also, comparisons are made between measured and predicted heating rates.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and cal-
culations were made in U.S. Customary Units.

M, free-stream Mach number

Po local surface pressure, N/m2 (Ib/ft2)

Pgr, standard pressure at sea level, N/m?2 (1b/ft2)

pt,2 total pressure behind a normal shock, N/m2 (lb/ft2)

ry nose radius, cm (in.)

S distance along surface measured from stagnation point, cm (in.)
Pgr, standard density at sea level, kg/m3 (slugs /it3)

0 circumferential station, deg




SPACECRAFT

The spacecraft, which consisted of heat-shield materials bonded to a primary sub-
structure, was similar to previous Pacemaker spacecraft (ref. 3). Figure 1 shows a
sketch of the spacecraft heat shield. It was a hemispherically blunted cone with a cylin-
drical afterbody. The forward portions of the heat shield were made of carbon-phenolic.
The aft cylindrical portions were made of low-density ablators bonded to a layer of cork.
These ablators are not discussed in this paper. The overall dimensions of the spacecraft
were a length of 83.19 cm (32.75 in.) and a diameter of 25.4 c¢m (10.0 in.). The initial
nose radius was 6.35 cm (2.5 in.) and the half-angle of the cone was 12,59, Cylindrical
sections aft of the spacecraft housed a recovery parachute and the spacecraft telemetry.

The carbon-phenolic material had a specific gravity of 1.38. It consisted of equal
parts by weight of carbon fibers approximately 0.63 cm (0.25 in.) long and phenolic resin.
The material was molded at the Langley Research Center into cylindrical billets 30.48 cm
(12.0 in.) in diameter and 15.24 cm (6.0 in.) thick. Upon molding, the carbon fibers in
the billets lay in planes perpendicular to the applied molding force, but randomly oriented
within these planes. The carbon-phenolic parts of the heat shield consisted of 10 separate
pieces machined from these billets. Figure 2 shows the pieces of the heat shield and
notes the fiber-plane orientation of each one. Table I shows the locations of the pieces
' in the molded billets before machining. The pieces were machined in this manner to
obtain the desired fiber-plane orientation in the different areas of the spacecraft. On the
hemispherical nose, the fiber planes ranged from parallel to the surface at the stagnation
point to 77.50 at the hemisphere-cone tangent point. The fiber-plane orientation on two
opposed quadrants of the conical section was normal to the surface and on the other two
remaining quadrants the fiber planes were swept backwards 45° to the surface. The fiber
planes in the cylindrical section were oriented normal to the surface around the entire
periphery. The size of the molded billets required the conical quadrants to be machined
in two pieces rather than in one piece.

Photographs of the spacecraft are shown in figure 3. The assembled spacecraft
before flight is shown in figure 3(a). The nine pieces of carbon-phenolic on the cone and
hemisphere were hard bonded to the primary substructure with a supported film epoxy-
phenolic adhesive. The bond line was roughly 0.254 mm (0.010 in.) thick. At the junc-
tures between the hemisphere and the cone, and between the forward cone quadrants and
the aft cone quadrants, additional support for the pieces was obtained by two embedded
mild steel circular rings, 0.159 by 0.635 cm (0.0625 by 0.25 in.) in cross section, keyed
to grooves machined into the interface surfaces between these pieces (see fig. 3(b)). Sim-
ilarly, the cone quadrants were reinforced longitudinally by straight splines of mild steel
embedded into grooves machined into the interface surfaces along the longitudinal seams



TABLE I. - FIBER-PLANE ORIENTATION?

Part Fiber -plane orientation Location of part in billet

Nose cap Varies from parallel to Molding force
surface at stagnation
point to 77.5° to the “
surface at hemisphere-
cone tangent point

Cone Perpendicular to surface

Cone 45° to surface

Cylinder Perpendicular to surface

2 The carbon fibers lie in planes perpendicular to the axis of rotation of the

cylindrical billets but are randomly oriented within these planes.




of the cone. The interface surfaces of these nine pieces were bonded with an elastomeric
silicone rubber adhesive. Also, the cylindrical piece of carbon-phenolic was bonded to
the primary substructure with an elastomeric silicone rubber adhesive.

INSTRUMENTATION

The instrumentation located in the carbon-phenolic heat shield consisted of the fol-
lowing: two 7-element radioactive ablation sensors, 14 surface thermocouples, six
3-element in-depth thermocouple assemblies, one 2-element in-depth thermocouple
assembly, three acoustic sensors, and three calorimeters. Figure 4 shows the stations
where instrumentation was located., Table II presents the locations on the spacecraft of
the sensors and their sensing depths.

The radioactive ablation sensors (ref. 4) consisted of seven minute particles of
radioactive material (tantalum 182) encapsulated in pyrolytic-carbon sleeves and then
embedded in removable carbon-phenolic plugs, as shown in figure 5. These particles of
tantalum 182 were in the form of wires 0.1270 mm (0.005 in.) in diameter by 0.381 to
2.54 mm (0.015 to 0.100 in.) long. Tapered plugs, machined from commercially avail-
able high-density graphite, were forced into the ends of the pyrolytic-carbon sleeve, and
any excess removed. As the carbon-phenolic heat shield receded due to ablation and the
radioactive particles were removed, sensing instrumentation, located within the space-
craft, monitored the loss of the minute particles and indicated the location of the heat-
shield surface. The sensing instrumentation included two Geiger-Muller tubes. These
tubes were protected with shielding material so that each tube monitored only one plug.

The surface thermocouples were a ribbon type similar to the thermocouples
described in references 3 and 5. The in-depth thermocouples were a wire type. Fig-
ure 6 is a sketch of a typical 3-element in-depth thermocouple assembly. Thermocouples
constructed of various materials were available. The selections made were based on the
expected maximum temperature at the thermocouple location, Tungsten and tungsten with
26 percent rhenium, suitable for temperatures up to 3031 K (5000° F), were selected for
the surface thermocouples on the hemispherical nose and cone. Platinum and platinum
with 13 percent rhodium, suitable for temperatures up to 1922 K (3000° F), were selected
for the surface thermocouples on the cylinder. The three kinds of in-depth thermocouples
selected were: tungsten with 5 percent rhenium and tungsten with 26 percent rhenium for
expected maximum temperature over 1366 K (2000° F); chromel and alumel for 811 K to
1366 K (1000° F to 2000° F); and chromel and constantan for up to 811 K (1000° F).

The acoustic sensor (ref., 6) consisted of a small crystal microphone located within
the spacecraft and communicating with the spacecraft boundary layer via a small-diameter
port. The acoustic sensor array on the spacecraft was designed to measure the location



TABLE L. - SENSOR LOCATIONS

Station Sensing depth
Sensor type Number Fib.eer Egﬁme
Axial Circumferential cm in, ort (‘;) on
Radioactive R1-1 0° 0° 0.038 0.015 0°
R1-2 .089 .035
R1-3 .152 .060
R1-4 .216 .085
R1-5 292 115
R1-6 .368 .145
R1-7 457 .180
R2-1 45° 0° 0.076 0.030 45°
R2-2 .178 .070
R2-3 .305 120
R2-4 445 .175
R2-5 .559 .220
R2-6 673 .265
R2-7 .851 .335
Surface N1 450 90° 0.0 0.0 45°
thermocouple N2 67.50 2700 67.50
N3 B-B 300 900
N4 120° 45°
N5 210° 900
N8 300° 450
N7 D-D 750 450
N8 165° 900
N9 2550 450
N10 3450 90°
N11 F-F 550
N12 125°
N13 2359
N14 305°
In-depth P1-1 0° 00 0.381 0.150 0°
thermocouple P1-2 .635 .250 j
P1-3 1.016 .400
p2-1 45° 180° 0.508 0.200 450
P2-2 j 762 .300
P2-3 1,016 .400
P3-1 c-C 22,50 0.025 0.010 90°
P3-2 ] .356 .140
P3-3 711 .280
P4-1 112.5° 0.025 0.010 450
P4-2 : l .356 .140
P4-3 Rt .280
P5-1 202.5° 0.178 0.070 90°
P5-2 ) .533 .210 l
P5-3 .883 .350
P6-1 292,50 0.178 0.070 45°
P6-2 .533 .210
P6-3 .889 .350
P7-1 E-E 2750 0.127 0.050 900
- Y P7-2 E-E 275° .254 .100 90°
Acoustic Al B-B 80°
‘ A2 D-D 100°
A3 F-F 265°
Calorimeter c1 B-B 260° 0.025 0.010
l cz2 D-D 280° .025 010
c3 F-F 85° .000 .000

2 piber -plane orientation is with respect to the local surface.




and level of the boundary-layer sound-pressure fluctuation, Boundary-layver flow fran-
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sition from laminar to turbulent is accompanied by a sudden increase in the boundary-
layer sound-pressure fluctuations. Reference 7 illustrates transition detection by use
of this type of instrument.

The calorimeters were of the thin-foil type described in references 3 and 8.

A standard 12-channel Inter-Range Instrumentation Group (IRIG) FM/FM telemetry
system transmitted the following data: recession, temperature, heating rate, boundary-
layer noise, and spacecraft accelerations. The thermocouple and calorimeter data were
commutated. Calorimeter C1 data were continuous, also, in order to compare continuous
and commutated data. All the other data were continuous.

LAUNCH VEHICLE AND OPERATIONS

The Pacemaker launch vehicle and spacecraft in launch posifion are shown in fig-
ure 7. The vehicle was launched July 10, 1969, from the NASA Wallops Station launch
facility. It was launched at a nominal elevation angle of 70° on an azimuth of 135° with
impact and recovery 104 km (56 n. mi.) from Wallops Island.

The propulsion system of the Pacemaker launch vehicle consisted of four stages of
solid-propellant rocket motors: Honest John, Nike, TX-77, and Recruit. The first and
second stages were ignited during vehicle ascent. The third and fourth stages were
ignited during vehicle descent. In other details of the launch and recovery, the flight was
similar to that described in reference 3.

A plot of the trajectory and the sequence of events are shown in figure 8. The var-
iations of flight velocity and altitude during the data period are shown in figure 9. These
trajectory data were obtained from the AN/FPQ-6 tracking radar. Telemetered normal
and transverse accelerometer data showed no abnormal body motions during the data
period. The total angle of attack during the data period was less than 2,5°, The roll rate
at third-stage burnout, obtained from a gyro, was 86.1 deg/sec. After the data period
the spacecraft with fourth stage attached coasted to an altitude of 3048 m (10 000 ft). At
this altitude (Time = 148 sec) the fourth stage was separated from the spacecraft by a
pyrotechnic device initiated by a barometric switch. A parachute was deployed and the
spacecraft was lowered to the water at a velocity of about 18.3 m/sec (60 ft/sec).

TEST ENVIRONMENT

A rawinsonde launched just prior to flight measured ambient pressure and tempera-
ture. Nondimensionalized values of pressure and computed ambient density as functions
of altitude are shown in figure 10(a). Figure 10(b) shows the temperature variation with
altitude.

-J



Computed pressure distributions over the initial spacecraft configuration are shown
in figure 11 for several free-~stream Mach numbers. The distributions for the hemi-
sphere and cone were obtained from reference 9, and the distribution for the cylinder was
obtained by a flow-field solution using the method of characteristics (ref. 10).

Computed histories of heating rate, pressure, shear stress, and Reynolds number
based on wetted distance from the stagnation point for several stations on the spacecraft
are presented in figures 12 to 15. All computations were made by utilizing the methods
described in reference 11. The heating rates for locations away from the stagnation point
were calculated by Eckert's reference-enthalpy method where a local enthalpy and local
pressure were used to determine all other reference thermodynamic properties. The
local heat-transfer coefficients as functions of a skin-friction factor were calculated by
using Reynolds' analogy and a Stanton number based on the enthalpy difference. The tur-
bulent incompressible skin-friction factor was given by the Schultz-Grunow relationship.
Turbulent aerodynamic shears were obtained by use of incompressible skin-friction coef-
ficients obtained from flow properties at reference conditions.

RESULTS AND DISCUSSION

Spacecraft Appearance

Photographs of the recovered spacecraft are shown in figure 16, As can be seen
in these photographs the contours of the spacecraft surface were somewhat irregular. In
several areas of the spacecraft, splitting of the heat shield occurred along planes parallel
to the carbon-fiber-plane orientation. The most severe split was observed at about the
700 station on the hemispherical nose and can be seen in figure 16(b). Indentations or
pitting and other surface irregularities occur only on the hemispherical nose. These
irregularities are possibly due to spallation or mechanical char removal.

On the hemispherical nose, where surface recession occurred to the greatest extent,
ribbons from the surface thermocouples and wires from the in-depth thermocouples were
protruding from the surface. Some of these protrusions can be seen in the closeup photo-
graph of figure 16(c). Also, note in figure 16(c) that the radioactive ablation sensor plug
at the stagnation point is missing.

Surface-Recession Results

Figure 17 shows the histories of surface recession obtained from the radioactive
ablation sensors at the stagnation point and at the 45° station on the hemisphere. The
data at the stagnation point indicate that the missing plug noted in figure 16(c) was in
place during the data period. It is possible that the plug was shaken loose from the
spacecraft at the time of parachute deployment.
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In addition to the radioactive-ablation-sensor data, preflight and postflight mea-
surements of the spacecraft contour were made by means of a dial gage and measuring
fixture described in reference 12. From these measurements the final postflight heat-
shield surface position relative to the preflight surface position was determined. The
differences between these measurements are presented in figure 18 as a surface reces-
sion or expansion. Measurements were made for several longitudinal locations at 30°
intervals circumferentially. Essentially uniform surface recession and char thickness
were observed on the conical section of the spacecraft. In figure 18(b) several points
indicate expansion of the heat shield. Expansion can be caused by either swelling of the
heat-shield material with no appreciable material removal, or by separating and raising
of the heat shield from the substructure. Separation of the heat shield was not evident.
However swelling or expanding of this material is possible under certain test conditions.
In reference 2 over the entire range of those test conditions, there was a measurable
expansion of the material which offset recession. An attempt, by the author of refer-
ence 2, to correlate the expansion with various parameters was unsuccessful.

Thermocouple Results

Experimental temperature histories of the surface and in-depth thermocouples are
presented in figures 19 and 20, respectively. Hand faired plots of these temperature his-
tories are presented in figures 21 and 22 for the surface and in-depth thermocouples,
respectively.

As pointed out in reference 5, the design of the surface thermocouples is such that
serious errors in the measured temperatures due to conduction of heat along the leads
can occur and no method for providing a temperature correction was devised. Further-
more, the thermocouples at the 45° and 67%0 stations did not recede with the ablating
heat-shield surface and therefore protruded above the surface into the boundary layer,
probably producing unknown effects on the measured temperatures obtained at these
stations.

A malfunctioning of three surface thermocouples (N7, N11, and N13) occurred during
the flight. Both N11 and N13 malfunctioned at the beginning of the data period and as a
result are not shown. The temperature reading from N7 became erratic at roughly
77 sec. Therefore, in figure 21(c) N7 is not plotted beyond this time.

A number of the in-depth thermocouples malfunctioned during the data period. The
heat-shield surface receded past the hot junctures of the two outermost thermocouples at
the stagnation point (P1-1 and P1-2) and of all three thermocouples at the 45° station
(P2-1, P2-2, and P2-3). The hot junctures of the thermocouples were destroyed upon
being exposed to the hot airstream in the boundary layer. Consequently, no measure-
ments are available beyond the exposure times. See figures 22(a) and 22(b). Thermo-



couples P1-3 and P5-2 went out of order during the data period even though they were
not exposed to the boundary layer. It is possible that the expansion of the char layer
broke the thermocouple junctures or lead wires.

Calorimeter Results

and aft) and one location on the cylindrical section of the spacecraft are presented in fig-
ure 23. Initially the heating rates increased until 75.7 sec when maximum heating rates |
for all three locations occur. Beyond this point the heating rates gradually decline, with !
the exception of a brief rise at about 80 sec at calorimeter C1. These data are com- |
pared with heating-rate calculations and the differences between the two are pointed out ’
subsequently.

The measured heating-rate histories at two locations on the conical section (forward }
!
|

Acoustic-Sensor Results

Sound-pressure fluctuations in the boundary layer, obtained from the acoustic sen-
sors, are qualitatively shown in figure 24. These sensors were located at the same axial
locations as the calorimeters but rotated 1800 around the periphery of the spacecraft (see
table II for exact locations of the sensors). The thrust acceleration of the spacecraift is
shown in the figure also, as a time reference.

A determination of the range of sound-pressure fluctuations in the boundary layer
was made by the methods described in reference 6 so that the sensitivity of each instru-
ment could be set, The most sensitive system, Al, was located at the forward cone sta-
tion. It exhibits some high-amplitude sound-pressure fluctuations starting about half-
way into the coast period after second-stage burnout (about 44 sec) and continuing up to
66.75 sec. These high-amplitude pressure fluctuations can be attributed to unsteady flow
over the spacecraft during this transonic period of the flight and should not be construed
as boundary-layer transition. The next instrument, A2, located at the rearward cone sta-
tion, was set to be less sensitive than Al. The least sensitive system, A3, was located
on the cylindrical section.

Figure 24 also shows the rocket motor starting shocks at the third- and fourth-
stage ignitions. The third-stage motor-starting shock at 66 sec shows a high-amplitude
response of the three acoustic sensors, and A2 and A3 clearly illustrate rapid damping.
Fine frequency details of these signals, not apparent in figure 24, show characteristic
low frequencies in the damping wave, presumably related to spacecraft structural vibra-
tions induced by the starting shock and burning, Similar low frequencies also exist in
the Al-sensor data, although partially obscured by high acoustic levels from other sources
at that time. Similar low-frequency damping signals can be seen for a half second or so
after fourth-stage motor ignition. It is noteworthy that these sensors were not disabled
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or grossly affected by rocket-motor burning, and operated essentially normally after
recovery from the ignition-starting shock, although there is a minor increase in sensor-
output signal level during burning.

It is also of interest to note that the total spacecraft velocity became subsonic
during the latter part of the upward coasting portion of the flight, after second-stage
motor burnout, prior to third-stage ignition. Then, shortly after third-stage thrust
buildup, the vehicle velocity again became supersonic. Figure 24 shows a pronounced
decrease in acoustic-sensor signal level about a half second after third-stage thrust
buildup. Presumably, this sensor signal-level decrease is indicative of flow transition
from subsonic to supersonic associated with increasing velocity.

Also in figure 24, at about 67.25 sec the acoustic-sensor data are marked, apparently
by the occurrence of a chug during third-stage motor ignition.

Except for sensor A3, the acoustic-sensors signal levels remained essentially as
seen after 74 sec for the duration of the data transmission portion of the flight. The sig-
nal from sensor A3 continued to build after 77 sec achieving a final level about twice that
shown in figure 24.

Heat Transfer and Boundary-Layer Transition Results

Comparisons of calorimeter and predicted heating rates.- The calorimeter heating
rates of figure 23 are reshown in figure 25. Also, the predicted laminar and turbulent
heating rates computed by the methods in reference 11 have been superimposed on the
figure for comparison. Choosing as the time of transition the first sharp deviation of the
calorimeter trace above the calculated laminar heating rate, the time of transition for the
three calorimeters C1, C2, and C3 observed from figure 25 are 71,25, 70.25, and 70.0 sec,
respectively.

There are several unexpected variations in the measured heating rates, The most
pronounced difference between the measurements and predicted turbulent values occurs
at 79 sec for calorimeter C1 (station B-B). At this time, the measured heating rate is
30 percent less than theory, and then for 2 sec the heating rate increases, whereas the
calculated values and the other measured values at C2 and C3 decrease steadily from the
peak condition, There is good agreement between the measured and computed peak val-
ues at stations B-B and D-D. However, at station F-F the measured peak value is 20 per-
cent less than the calculated one.

Comparisons of calorimeter data and acoustic-sensor data.- A comparison between

the calorimeter measurements and the acoustic measurements is presented in the follow-
ing table:

11



Sensor Time ofstransition, Sensor Time of transition,
ec sec
C1 71.25 Al 70.49
C2 70.25 A2 70.34
C3 70.00 A3 69.95

Although there is a favorable comparison between the times of transition for the
two systems, it should be pointed out that the respective systems (C1 and Al, C2 and A2,
and C3 and A3) are not located adjacent to each other but are rotated 180° around the
spacecraft from each other. It should be recognized that transition may not occur at the
same axial station on opposite sides of the spacecraft at the same time.

Results from the acoustic sensors do not agree with the results from the calorim-
eter data. In general, the acoustic data lead the calorimeter data and by larger inter-
vals at higher heating rates, or at more forward locations. An explanation for this dis-
agreement is the much faster response time of the acoustic sensors as compared to the
calorimeter sensors. The acoustic sensors have the capability of responding to rapidly
fluctuating, interniittent, and unsteady flow conditions, even during developing transitional
flow conditions. There are several such signal signatures in the acoustic data of fig-
ure 24, Calorimeters, or other heat-sensing, flow-measuring devices would, in general,
not be capable of identifying such intermittent flow conditions, due to their inherently
much slower response time,

During the flight test the local Mach number along the cone and cylinder was
roughly 3. As shown in reference 13, the approximate range of transition Reynolds num-
ber based on wetted length for this local Mach number is 1.5 X 108 to 5% 108. The com-
puted Reynolds numbers at the above indicated times of transition are 0.6 X 108 and
1.3 % 108 on the cone and 1.5 x 108 on the cylinder. These values were obtained using
the computed pressure distributions shown in figure 11 and the computed values of local
surface pressure shown in figure 13. Transition occurred at lower Reynolds numbers

on the spacecraft than indicated in reference 13, possibly due to surface roughness and
mass transfer.

CONCLUDING REMARKS

Carbon-phenolic material was flight tested on a recoverable spacecraft launched by
the Pacemaker vehicle system. The experimental results are presented. Due to high
heating rates and possible spallation and mechanical char removal the greatest mass
loss occurred in the nose region. Essentially uniform surface recession and char thick-
ness were observed on the conical section of the spacecraft.
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A comparison of measured heating rates with computed turbulent and laminar
heating rates, as well as measurements of sound-pressure fluctuations in the boundary
layer obtained with acoustic sensors, indicated that the boundary layer underwent tran-
sition. The acoustic sensor provides an interesting new data form for the general study
of boundary-layer transition for free-flight investigations.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., February 8, 1972,
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1.-69-3495

(a) Spacecraft before flight.
Figure 3.- Photographs of the spacecraft.
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(b) Cross section of the recovered hemispherical nose cone.

Figure 3.- Concluded.
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Figure 7.- Photograph of spacecraft and Pacemaker launch vehicle.
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Figure 10.- Atmospheric data obtained from rawinsonde data.
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Figure 10.- Concluded.
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Carbon-phenolic

(a) View of the entire spacecraft.

Figure 16.- Photographs of the recovered spacecraft.

L-69-5424.1




L-69-5407.1
(b) View of the hemispherical and conical portion of the spacecraft.

Figure 16.- Continued.
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(c) Closeup of the hemispherical nose.

Figure 16.- Concluded.
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Figure 19.- Measured surface temperature histories,
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Figure 19.- Continued.
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Figure 23.- Measured heating-rate histories from calorimeters.
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Figure 23.- Continued.
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Figure 25.- Comparison of measured and computed heating rates.
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